			RE Modeling Dynamic Fuels wit
Attribute	Description	Enumerated	Enumerated Value Description
attribute	Безеприон	Value	Endinerated Value Description
		0.4	1 104
	These fire behavior fuel models represent		
	distinct distributions of fuel loadings found		
	among surface fuel components (live and		
	dead), size classes and fuel types. The fuel		
	models are described by the most common fire		
alue	carrying fuel type (grass, brush, timber litter or	102	GR2
aiuc	slash), loading and surface area-to-volume ratio by size class and component, fuelbed depth and moisture of extinction. Further detail can be found in Scott and Burgan (2005) and Rothermel (1983).	103	GR3
		104	GR4
		105	GR5
		106	GR6
		107	GR7
		108	GR8
		109	GR9
	•	Value Enumerated Value Design 91 NB1 92 NB2 93 NB3 98 NB8 99 NB9 101 GR1 102 GR2 ratio 103 GR3 104 GR4 105 GR5 106 GR6 107 GR7 108 GR8	
		204	SB4

FBFM13 display attribute, fire behavior 40 fuel model	NB1	Urban
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NB2	Snow/Ice
	NB3	Agriculture
	NB8	Water
	NB9	Barren
	GR1	Short, sparse dry climate grass is sl
	GR2	Low load, dry climate grass primarily
	GR3	Low load, very coarse, humid climat
l	GR4	Moderate load, dry climate grass, co
	GR5	Low load, humid climate grass, fuell
	GR6	Moderate load, continuous humid cl
l	GR7	High load, continuous dry climate gr
	GR8	High load, very coarse, continuous,
	GR9	Very high load, dense, tall, humid cl
	GS1	Low load, dry climate grass-shrub s
	GS2	Moderate load, dry climate grass-sh
	G32	moderate
	GS3	Moderate load, humid climate grass
		and flame length is moderate
	GS4	High load, humid climate grass-shruvery high
	SH1	Low load dry climate shrub, woody solver low
	SH2	Moderate load dry climate shrub, wo
	SH3	Moderate load, humid climate shrub flame low
	SH4	Low load, humid climate timber shruabout 3 feet, spread rate high and fl
	SH5	High load, humid climate grass-shru
	SH6	Low load, humid climate shrub, woc rate and flame high
	SH7	Very high load, dry climate shrub, w than SH6 and flame very high
	SH8	High load, humid climate shrub, wor spread rate and flame high
	SH9	Very high load, humid climate shrub herbaceous may be present, spread
	TU1	Low load dry climate timber grass s
	TU2	Moderate load, humid climate timbe
	TU3	Moderate load, humid climate timbe moderate
	TU4	Dwarf conifer with understory, short
	TU5	Very high load, dry climate shrub, he
	TL1	Low load compact conifer litter, corr
		rate and flame low
	TL2	Low load broadleaf litter, broadleaf,
	TL3	Moderate load conifer litter, modera
	TL4 TL5	Small downed logs moderate load c High load conifer litter, light slash or
ı	ILO	I light load conflict litter, light stash of

		TL	6	Moderate load broadleaf litter, sprea
		TL		Large downed logs, heavy load fore
		TL	8	Long needle litter, moderate load lo
		TL	9	Very high load broadleaf litter, may
		SB	1	Low load activity fuel, light dead and moderate and flame low
		SB	2	Moderate load activity fuel or low lo many still standing, spread rate and
		SB	3	High load activity fuel or moderate I diameter class, depth > 1 foot, blow
		SB	4	High load blowdown, heavy blowdo very high
Red	Red color value/255	0 -	1	
Green	Green color value/255	0-	1	
Blue	Blue color value/255	0-	1	
For more	e information, refer to: http://www.	fs.fed.us/rm/pubs/rmrs	_gtr15	3.pdf

hort, naturally or heavy grazing, predicted rate of fire spread and flame length low y grass with some small amounts of fine, dead fuel, any shrubs do not affect fire behavior te grass continuous, coarse humid climate grass, any shrubs do not affect fire behavior ontinuous, dry climate grass, fuelbed depth about 2 feet bed depth is about 1-2 feet limate grass, not so coarse as GR5 rass, grass is about 3 feet high humid climate grass, spread rate and flame length may be extreme if grass is fully cured imate grass, about 6 feet tall, spread rate and flame length can be extreme if grass is fully cured hrub about 1 foot high, grass load low, spread rate moderate and flame length low irub, shrubs are 1-3 feet high, grass load moderate, spread rate high, and flame length is 3-shrub, moderate grass/shrub load, grass/shrub depth is less than 2 feet, spread rate is high ub, heavy grass/shrub load, depth is greater than 2 feet, spread rate is high and flame length shrubs and shrub litter, fuelbed depth about 1 foot, may be some grass, spread rate and flame pody shrubs and shrub litter, fuelbed depth about 1 foot, no grass, spread rate and flame low), woody shrubs and shrub litter, possible pine overstory, fuelbed depth 2-3 feet, spread rate and ub, woody shrubs and shrub litter, low to moderate load, possible pine overstory, fuelbed depth ame moderate ub combined, heavy load with depth greater than 2 feet, spread rate and flame very high ody shrubs and shrub litter, dense shrubs, little or no herbaceous fuel, depth about 2 feet, spread oody shrubs and shrub litter, very heavy shrub load, depth 4-6 feet, spread rate somewhat lower ody shrubs and shrub litter, dense shrubs, little or no herbaceous fuel, depth about 3 feet, , woody shrubs and shrub litter, dense finely branched shrubs with fine dead fuel, 4-6 feet tall, 1 rate and flame high hrub, low load of grass and/or shrub with litter, spread rate and flame low er-shrub, moderate litter load with some shrub, spread rate moderate and flame low er grass shrub, moderate forest litter with some grass and shrub, spread rate high and flame conifer trees with grass or moss understory, spread rate and flame moderate eavy forest litter with shrub or small tree understory, spread rate and flame moderate ppact forest litter, light to moderate load, 1-2 inches deep, may represent a recent burn, spread hardwood litter, spread rate and flame low ite load conifer litter, light load of coarse fuels, spread rate and flame low of fine litter and coarse fuels, small diameter downed logs, spread rate and flame low dead fuel, spread rate and flame low

ad rate and flame moderate				
st litter, larger diameter downed logs, spread rate and flame low				
ng needle pine litter, may have small amounts of herbaceous fuel, spread rate moderate and				
be heavy needle drape, spread rate and flame moderate				
down activity fuel, fine fuel is 10-20 t/ac, 1-3 inches in diameter, depth < 1 foot, spread rate				
ad blowdown, 7-12 t/ac, 0-3 inch diameter class, depth about 1 foot, blowdown scattered with flame low				
pad blowdown, heavy dead down activity fuel or moderate blowdown, 7-12t/ac, 025 inch down moderate, spread rate and flame high				
wn fuel, blowdown total, foliage and fine fuel still attached to blowdown, spread rate and flame				